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A novel three-dimensional triangular organic–inorganic hybrid
network self-assembled by mononuclear [Mn(4,4�-bipyridine)2-
(H2O)4]

2� cations and rich solvate 4,4�-bipyridine molecules
through hydrogen-bonding and �–� interactions†
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The solid compound formulated as [Mn(4,4�-bpy)2-
(H2O)4][ClO4]2�(4,4�-bpy)4 (bpy = bipyridine) has been
shown by single-crystal structural analysis to be a three-
dimensional network with triangular channels, which
are constructed by mononuclear [Mn(4,4�-bpy)2(H2O)4]

2�

cations and 4,4�-bpy molecules through extensive
hydrogen-bonds and �–� interactions.

Pronounced interest has recently been focused on the crystal
engineering of supramolecular architectures organised by
coordinate covalent or supramolecular contacts (such as hydro-
gen-bonding, π–π interaction etc.).1,2 4,4�-Bipyridine (4,4�-bpy)
is an excellent bridging ligand, and so far a number of one-,
two- and three-dimensional infinite metal(,  or )–4,4�-bpy
frameworks have already been generated.3 However, of the
above-mentioned frameworks, most are generated directly by
coordination bonds, or one-dimensional coordination chains
are generated first, and are further extended into higher dimen-
sional networks by hydrogen-bonding interactions [Charts 1, 2

and 3],4 only a few are formed by self-assembly of organic
molecules and hydrated metal-ion building blocks.5 We have
been pursuing the synthetic strategies for the preparation of

Chart 1

† Supplementary Data Available: rotatable 3-D crystal structure
diagram in CHIME format. See http:/www/rsc.org/suppdata/dt/1999/
3657/

non-interpenetrating open frameworks with variable cavities or
channels, in which the rod-like rigid spacers such as 4,4�-bpy,
pyrazine and the related species are chosen as building blocks.6

Chart 2

Chart 3
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In the present work, we report the preparation and crystal
structure of a novel three-dimensional triangular organic–
inorganic hybrid network self-assembled simultaneously by
hydrogen-bonding and π–π interactions, namely [Mn(4,4�-
bpy)2(H2O)4][ClO4]2�(4,4�-bpy)4 1.

Complex 1 was synthesised by self-assembly of MnII ions
with 4,4�-bpy ligands, as shown in Chart 4. An ethanolic solu-

tion (10 cm3) of 4,4�-bpy (0.156 g, 1.0 mmol) was added drop-
wise to a stirred aqueous solution (5 cm3) of Mn(ClO4)2�6H2O
(0.362 g, 1.0 mmol) at 50 �C for 15 min. The resulting colourless
solution was allowed to stand in air at room temperature for 5
days, yielding colourless block crystals (90% yield based on
ligand). The elemental analysis confirmed the formula of 1.‡ It
is noteworthy that 1 is, to our knowledge, the compound poss-
essing the highest molar ratio (1 :6) of 4,4�-bpy and metal.
Complex 1 is also the unique product when the molar ratio of
MnII and 4,4�-bpy was changed to 1 :2 or 1 :3.

X-Ray crystallography§ has established that complex 1 is
made up of mononuclear [Mn(4,4�-bpy)2(H2O)4]

2� cations, sol-
vate 4,4�-bpy molecules and ClO4

� anions. As shown in Fig. 1,
the MnII atom is, in a slightly octahedral geometry, coordinated
to two nitrogen atoms from two different 4,4�-bpy (Mn–
N = 2.263(3) Å) and four aqua ligands (Mn–O = 2.174(3)–
2.199(2) Å). The divalent cations and the uncoordinated 4,4�-
bpy molecules are organised into three-dimensional molecular
networks (see Fig. 2) with triangular subunits by π–π inter-
actions and hydrogen-bonds between the solvate 4,4�-bpy
and aqua ligands. Each subunit is enclosed by three mono-
nuclear cations and four uncoordinated 4,4�-bpy molecules,
each at a conjunctive point and one side of the triangular sub-
units, respectively, adjacent MnII � � � MnII distances are 14.306 ×
14.919 × 15.448 Å, as shown in Chart 4. Each aqua donates two
hydrogen bonds with two different 4,4�-bpy molecules

Fig. 1 ORTEP 12 drawing (at 35% probability level) of the mono-
nuclear core in 1.

Chart 4

(N � � � O = 2.843(4)–2.885(4) Å, N � � � O � � � N = 118.88–
130.43�), different from those presented in Charts 1, 2 and 3.
The uncoordinated pyridyl ends of 4,4�-bpy ligands from two
different mononuclear cations stack with a face-to-face separ-
ation of ca. 3.55 Å, indicating significant π–π interactions.7 The
pyridyl rings of all 4,4�-bpy molecules are non-coplanar and are
twisted by 10.1� and 22.8–32.2� for the coordinated ones and
solvate ones, respectively. The inner triangular channels are
occupied by the ClO4

� anions, and each ClO4
� anion contacts

with adjacent 4,4�-bpy molecules, as illustrated in Fig. 3. The
C � � � O distances and C–H � � � O angles are within the ranges
3.286–3.425 Å and 118.0–172.2�, respectively, indicating signifi-
cant C–H � � � O hydrogen bonding interactions, which have
recently been documented elsewhere.8

It is noteworthy that complex 1 is, to our knowledge, the
first example of three-dimensional metal–4,4�-bpy molecular
networks having triangular channels that are sustained by 4,4�-
bpy spontaneously through hydrogen-bonding and π–π stack-
ing interactions, although other metal–4,4�-H2bpy networks
with hydrogen-bonding have been intensively investigated.4

The isolation of 1 and other organic–inorganic hybrid net-
works 2 involving hydrogen-bonded water molecules suggests

Fig. 2 Top view showing the triangular channels in 1. The solvate 4,4�-
bpy molecules are shown as single bold lines. Hydrogen bonds are
represented by broken lines.

Fig. 3 ORTEP view showing the C–H � � � O hydrogen bonds among
the 4.4�-bpy entities and ClO4

� ions.
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the possibility of constructing molecular frameworks with
divalent metal salts and organic molecules under appropriate
conditions.

The ESR spectrum (X-band) of 1 in acetonitrile at 40 K is
characterised by a broad resonance around g = 2.0 that is nearly
3200 G, giving six hyperfine coupling splitting lines. This
feature is similar to those of related mononuclear MnII

complexes containing nitrogen atoms.9
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Notes and references
‡ Anal. Calc. for C60H56N12MnO12Cl4 1: C, 57.06; H, 4.47; N, 13.31%.
Found: C, 56.98; H, 4.38; N, 13.25%.
§ Crystal data for 1: C60H56N12MnO12Cl4, M = 1263.02, triclinic, space
group P-1 (No. 2), a = 7.822(2), b = 14.306(3), c = 14.919(3) Å,
α = 63.78(3), β = 87.60(3), γ = 81.30(3)�, V = 1479.9(6) Å3, Z = 2,
Dc = 1.572 g cm�3, µ = 6.95 cm�1. Data collection (2.64� ≤ θ ≤ 25.0�) was
performed at 293 K on a Siemens R3m diffractometer (Mo-Kα,
λ = 0.71073 Å). The structure was solved with direct methods
(SHELXS-97) 10 and refined with full-matrix least-squares technique
(SHELX-97) 11 to final R1 value of 0.0483 for 395 parameters and 2639
unique reflections with I ≥ 2σ(I) and wR2 of 0.1358 for all 5219 reflec-
tions. CCDC reference number 186/1653. See http://www.rsc.org/
suppdata/dt/1999/3657/ for crystallographic files in .cif format.
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